{ "cells": [ { "cell_type": "markdown", "id": "f9a56972", "metadata": {}, "source": [ "# Foreword\n", "\n" ] }, { "cell_type": "markdown", "id": "3b6d2f62-03a1-4f4d-9d36-6efedfd46aef", "metadata": {}, "source": [ "These demo notebooks must be executed from the `docs` directory. \n", "\n", "Before starting, remember to activate the environment: \n", "\n", " source .venv/bin/activate\n", "\n", "or equivalently \n", "\n", " uv run jupyter notebook\n", " \n", "The scripts also produce publication-quality figures in `../extra`.\n", "\n", "The original trajectories files are supporting information of the paper [1](http://science.sciencemag.org/content/334/6055/517) and must be obtained from DESRES. They need to be split in 3 unfolded + 3 folded segments, downsampled, and filtered according to the directions in the files. For reproducibility, we provide the corresponding pre-computed projections (the high-dimensional embeddings that are input to the ID functions).\n", "\n", "1. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. How Fast-Folding Proteins Fold. [Science. 2011 Oct 28;334(6055):517–20.](http://science.sciencemag.org/content/334/6055/517) \n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "80c00921-a9f5-40a1-ad67-072f5a36d30b", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.8" } }, "nbformat": 4, "nbformat_minor": 5 }